
Using tgrep2 on XML

Hanne Moa

February 2, 2005

1 Introduction

As part of the LOGON project (Lønning et al., 2004), I have access to a digitized
version of the Engelsk stor ordbok (Eek et al., 2001), a bilingual dictionary
of English and Norwegian, encoded in XML. It will be neccessary to extract
much from this dictionary, but unfortunately the nature of XML and the size1

of the dictionary would make looking through the dictionary by hand a truly
herculean task. Therefore, efficient and easy to use tools to search in and extract
information from XML are needed.

In this paper I demonstrate how XML can be searched by TGrep2 (Rohde,
2004) by conversion to trees encoded as s-expressions (McCarthy, 1960).

2 XML and how to search it

It is possible to use existing text-search tools like grep on XML, but these are
generally unsuitable as they often are meant to search unstructrured text, while
with XML the structure itself is content information that needs to be searchable.

One way of extracting bits and pieces of XML directly is to use XSLT (Clark
et al., 1999). However, XSLT is complex and verbose, as it uses mostly functions
and not syntax to do its searching, making it less useful for quick exploration
from the command line2.

2.1 XML as a tree

XML is, in essence, just a way of encoding a tree3, as figure 1 illustrates.

<a>
 c d
 <e>f</e>

(a
 (b c d)
 (e f))

b

c

a

d

e

f

Figure 1: Equivalent trees: from left to right the same tree is encoded in XML,
as s-expressions and visually.

1A single volume with over 200 000 words and 500 000 translations.
2Its predecessor DSSSL has much the same drawbacks, and has largely been phased out.
3With cross-references one can also encode more complex graphs.

1

One tool that makes the search in and extraction of trees easily possible is
tgrep2, a follow-up to tgrep (tree-grep), that has for years been used to search
in the Penn treebank. Tgrep2 works on trees encoded as s-expressions, see
e.g. the middle figure of figure 1, and not directly on trees encoded in XML. S-
expressions differ from XML in that subtrees are enclosed by parentheses instead
of tags and the first word/token after the opening parenthesis is the root of the
subtree, furthermore, s-expressions only has subtrees and hence no attributes.

2.2 XML as s-expressions

SXML (Kiselyov, 2002) at http://ssax.sourceforge.net is a full reimple-
mentation of XML as s-expressions, however, it seemed to be overkill in this
instance. Therefore it was decided to make a simpler alternative to just convert
to and from generic XML, as described in this paper.

3 Converting between XML and s-expressions

3.1 From XML to s-expressions

This was quickily done with XSLT. Listing 1 shows the resulting generic stylesheet,
which is small enough that adjustments “in the field” are possible.

1 <?xml version=” 1 .0 ”?>
2 <xsl :stylesheet version=” 1 .0 ” xmlns :x s l=” ht tp : //www.w3 . org /1999/XSL/Transform”>

<xsl:output method=” text ”/>
4 <xsl:strip−space e lements=” �”/>

6 <xsl:template match=” text () ”>
(LEAF <xsl:value−of s e l e c t=”normalize−space (.) ”/>)</xsl:template>

8

<xsl:template match=” �”>(<xsl:value−of s e l e c t=” local−name () ”/>
10 <x s l : i f t e s t=”@�”>(@ <xsl:for−each s e l e c t=”@�”>

(<xsl:value−of s e l e c t=” local−name (.) ”/><xsl :text> </xsl :text><xsl:value−of s e l e c t=” . ”/>)
12 </xsl:for−each>)</ x s l : i f>

<xsl:apply−templates/>)
14 </xsl:template>

16 </xsl :stylesheet>

Listing 1: XSLT-stylesheet to convert from XML to s-expressions. Line numbers
are included as a convenience to the reader.

Running the stylesheet in listing 1 on the example XML in listing 2 (page 7)
produces the s-expressions in listing 3 (page 7), sans line numbers and indenta-
tion.

The stylesheet in listing 4 on page 8 has been tailored for use on the XML
dictionary-example of listing 2, and produces the s-expressions of listing 5, sans
line numbers and indentation.

3.2 From s-expressions to XML

For completeness’ sake, a tool to go from s-expressions to XML was needed.
I made a standalone python program to serve this function, implemented by

a simple finite state transducer with the addition of a stack for the xml-tags.
The source for this is included in appendix B on page 9.

2

4 Usage and tips

To help illustrate usage and tips, the made-up example in listing 2 on page 7
will be used, an abstraction of the format used in Engelsk stor ordbok.

Conversion-results are in listings 3 on page 7 and 5 on page 9. The first is
the result of using the XSLT stylesheet unchanged while the second is the result
after applying most of the tips that follows.

4.1 Preparing the XML for tgrep2

Tgrep2 will consider all opening parentheses to branch off a new subtree. If
preventing this is relevant, it becomes necessary to replace all parentheses in the
XML by e.g. square brackets, for instance by using the standard search&replace-
command of a text-editor.

Line 19 in the example XML in listing 2 is a case in point, compare lines 45
and 46 in listing 3 with line 31 in listing 5.

4.2 Selecting the trees we want to convert

An XML-file generally includes only a single tree and not several (aka. a forest),
and therefore just a single root-node. In the example, that node is <dictionary>.

Now, we won’t be needing this <dictionary>-node in any of our tgrep2-trees
as we will be concentrating on the <entry>-nodes, so by adjusting line 10 in the
XSLT from

<x s l : i f t e s t=”@�”>(@ <xsl:for−each s e l e c t=”@�”>

to

<xsl:template match=” d i c t i ona ry // � ”>(<xsl:value−of s e l e c t=” local−name () ”/>

only the descendants of <dictionary> but not <dictionary> itself is included in our
tgrep2-able trees. Compare lines 1 to 3 in listing 3 with line 1 in listing 5.

4.3 Ignoring attributes

None of the attributes of the example are of use so they will be stripped from
the trees.

This can be accomplished by deleting4 the lines 10 to 12 inclusive from listing
1 and no attributes will be used in the trees. Otherwise, the attributes of a node
will be the first child subtree of the mother node, see figure 2. To see the effect
of doing this, compare lines 3 to 5 in listing 3 with line 1 in listing 5.

<node attr1="1" attr2="2"> ⇐⇒ (node (@ (attr1 1) (attr2 2)))

Figure 2: Conversion of attributes

4Alternatively: comment out by prepending <! −− and postpending −− >

3

4.4 What to do with free text

Free text, or #pcdata in XML-jargon, is content without explicit XML struc-
ture; text-strings that are neither a tag nor an attribute. XML-relatives like
HTML or MathML varies in how much and where they allow #pcdata, if any.

#pcdata cannot have daughters so I have decided to make them stand out
by turning them into a subtree of sisters with the tag LEAF as mother, thus
making them look different from other, non-#pcdata nodes that happen to
not branch.

By changing line 7 of listing 1 from

(LEAF <xsl:value−of s e l e c t=”normalize−space (.) ”/>)</xsl:template>

to

<xsl:value−of s e l e c t=”normalize−space (.) ”/></xsl:template>

the #pcdata become daughters of their logical mother node instead. Compare
line 4 in listing 2 and lines 6 and 7 in listng 3 with figure 1, which does not use
LEAF.

4.5 Converting from XML

To use an XSLT-stylesheet to convert XML to something else, an XSLT-processor
is necessary, and there are several available. Well-known opensource alternatives
include Saxon and Xalan, but I use xsltproc from the GNOME project.

Simply running xsltproc stylesheet xmlfile will write the transformed
xml to standard out, where it can be redirected to a file:

xsltproc stylesheet xmlfile > tgrep2ablefile

Then, it will be necessary to make the tgrep2-database from the s-expressions,
by running

tgrep2 -p tgrep2ablefile tgrep2database.t2c

Consult the documentation for tgrep2 for more options.

4.6 Examples of use of tgrep2

Space-considerations limits the number of useful examples that can be shown.
The last example is of particular interest in my work.

Showing all entries

tgrep2 -c tgrep2database.t2c ’entry’

The results are identical to listing 5 apart from the line-numbers and indenta-
tion.

Listing all possible part-of-speech tags used

tgrep2 -c tgrep2database.t2c ’pos’ | sort -u

(pos (LEAF n))
(pos (LEAF vt))

4

Listing only trees that describe transitive verbs

tgrep2 -c tgrep2database.t2c ’entry << (pos << vt)’

(entry (word (LEAF abash))
(pos (LEAF vt)) (d e f i n i t i o n (LEAF to make so . ashamed or embarrased))
(exp r e s s i on (words (LEAF to abash so . by snee r i ng))))

Listing only trees that contain “in expressions only”

tgrep2 -c tgrep2database.t2c ’entry << (in $ expressions $ only)’

(entry (word (LEAF abeyance))
(pos (LEAF n))
(d e f i n i t i o n (LEAF in exp r e s s i on s only))
(exp r e s s i on

(words (LEAF property in abeyance))
(meaning (LEAF property without an owner)))

(exp r e s s i on
(words (LEAF hold smth . in abeyance))
(meaning (LEAF temporar i ly suspend smth .))))

4.7 Converting back to XML

Use SXML or the program in appendix B. The latter is made by the author, and
is a generic s-expressions-to-XML-converter. It does not treat subtrees whose
roots are @ or LEAF in any special way.

4.8 Bonus: Translation by tgrep2

By using the right pattern in tgrep2 on the real Engelsk stor ordbok database,
one can get translation-suggestions:

Words: what is an “abbed”?

tgrep2 ’ekv >> (artikkel << abbed)’

(ekv (LEAF abbot))

Expressions: what does “hulter til bulter” mean?

tgrep2 -a ’ekv >> (artikkel << (uttrykk << (hulter $ til $ bulter))’

(ekv (LEAF pe l l−mel l))
(ekv (LEAF he l t e r− s k e l t e r))
(ekv (LEAF at s i x e s and sevens))
(ekv (LEAF in a mess))

5 Conclusion

Using tgrep2 to extract information from XML-encoded databases by way of
converting these to s-expressions is a perfectly viable solution to also find the
information that is stored only as structure in the XML, and as experiments
show it is also a solution that is relatively simple for this researcher.

5

References

James Clark et al. XSL Transformations (XSLT) Version 1.0. Techni-
cal report, W3C, 16 November 1999. URL http://www.w3.org/TR/1999/

REC-xslt-19991116.

Øystein Eek et al., editors. Engelsk stor ordbok: engelsk-norsk/norsk-engelsk.
Kunnskapsforlaget, 2001. ISBN 82-573-1288-6.

Oleg Kiselyov. A Better XML Parser through Functional Programming. In
S. Krishnamurthi and C. R. Ramakrishnan, editors, Practical Aspects of
Declarative Languages: 4th International Symposium, Lecture Notes in Com-
puter Science, Portland, OR. USA, January 2002. Springer-Verlag Heidelberg.
URL http://okmij.org/ftp/papers/XML-parsing.ps.gz.

Jan Tore Lønning, Stephan Oepen, Dorothee Beermann, Lars Hellan, John
Carroll, Helge Dyvik, Dan Flickinger, Janne Bondi Johannsen, Paul Meurer,
Torbjørn Nordg̊ard, Victoria Rosén, and Erik Velldal. LOGON. A Nor-
wegian MT effort. In Proceedings of the Workshop in Recent Advances in
Scandinavian Machine Translation, page 6, Uppsala, Sweden, 2004. URL
http://stp.ling.uu.se/RASMAT/extended_abstracts/LOGON.pdf.

John L. McCarthy. Recursive functions of symbolic expressions and their
computation by machine, Part I. Communications of the ACM, 3(4):184–
195, April 1960. URL http://www-formal.stanford.edu/jmc/recursive/

recursive.html.

Douglas L.T. Rohde. TGrep2 User Manual version 1.12, 4 November 2004.
URL http://tedlab.mit.edu/~dr/Tgrep2/tgrep2.pdf.

6

Appendices

A Examples used

All the listings in this appendix have been indented for readability and provided
with line numbers for the convenience of the reader.

A.1 The beginnings of a monolingual dictionary, encoded

in XML

1 <?xml version=” 1 .0 ”?>
2 <d i c t i ona ry>

<entry number=”1”>
4 <word>abacus</word><pos grammarpage=”nouns”>n</pos>

<d e f i n i t i o n>anc i ent manual c a l c u l a t o r</ d e f i n i t i o n>

6 <s e e a l s o>s l i d e r u l e</ s e e a l s o>

</ entry>

8 <entry number=”2”>
<word>abash</word><pos grammarpage=” verbs ”>vt</pos>

10 <d e f i n i t i o n>to make so . ashamed or embarrased</ d e f i n i t i o n>

<exp r e s s i on>

12 <words>to abash so . by snee r i ng</words>
</ exp r e s s i on>

14 </ entry>

<entry number=”3”>
16 <word>abeyance</word><pos grammarpage=” exp r e s s i on s ”>n</pos>

<d e f i n i t i o n>in exp r e s s i on s only</ d e f i n i t i o n>

18 <exp r e s s i on>

<words>(property) in abeyance</words>
20 <meaning>property without an owner</meaning>

</ exp r e s s i on>

22 <exp r e s s i on>

<words>hold smth . in abeyance</words>
24 <meaning>t emporar i ly suspend smth .</meaning>

</ exp r e s s i on>

26 </ entry>

</ d i c t i ona ry>

Listing 2: Example of a hypothetical dictionary of English encoded as XML.

A.2 The dictionary after direct conversion to s-expressions

1 (d i c t i ona ry
2

(entry
4 (@

(number 1))
6 (word

(LEAF abacus))
8 (pos

(@
10 (grammarpage nouns))

(LEAF n))
12 (d e f i n i t i o n

(LEAF anc i ent manual c a l c u l a t o r))
14 (s e e a l s o

(LEAF s l i d e r u l e)))
16

(entry

7

18 (@
(number 2))

20 (word
(LEAF abash))

22 (pos
(@

24 (grammarpage verbs))
(LEAF vt))

26 (d e f i n i t i o n
(LEAF to make so . ashamed or embarrased))

28 (exp r e s s i on
(words

30 (LEAF to abash so . by snee r i ng))))

32 (entry
(@

34 (number 3))
(word

36 (LEAF abeyance))
(pos

38 (@
(grammarpage exp r e s s i on s))

40 (LEAF n))
(d e f i n i t i o n

42 (LEAF in exp r e s s i on s only))
(exp r e s s i on

44 (words
(LEAF

46 (property) in abeyance))
(meaning

48 (LEAF property without an owner)))
(exp r e s s i on

50 (words
(LEAF hold smth . in abeyance))

52 (meaning
(LEAF temporar i ly suspend smth .)))))

Listing 3: The results of converting the example XML without adapting the
stylesheet.

A.3 A stylesheet tailored for the dictionary

1 <?xml version=” 1 .0 ”?>
2 <xsl :stylesheet version=” 1 .0 ” xmlns :x s l=” ht tp : //www.w3 . org /1999/XSL/Transform”>

<xsl:output method=” text ”/>
4 <xsl:strip−space e lements=” �”/>

6 <xsl:template match=” text () ”>
(LEAF <xsl:value−of s e l e c t=”normalize−space (.) ”/>)</xsl:template>

8

<xsl:template match=” d i c t i ona ry // � ”>(<xsl:value−of s e l e c t=” local−name () ”/>
10

<xsl:apply−templates/>)
12 </xsl:template>

14 </xsl :stylesheet>

Listing 4: XSLT stylesheet adjusted to the mock-up dictionary

A.4 The dictionary as s-expressions after conversion by

the adjusted stylesheet

8

1 (entry
2 (word

(LEAF abacus))
4 (pos

(LEAF n))
6 (d e f i n i t i o n

(LEAF anc i ent manual c a l c u l a t o r))
8 (s e e a l s o

(LEAF s l i d e r u l e)))
10

(entry
12 (word

(LEAF abash))
14 (pos

(LEAF vt))
16 (d e f i n i t i o n

(LEAF to make so . ashamed or embarrased))
18 (exp r e s s i on

(words
20 (LEAF to abash so . by snee r i ng))))

22 (entry
(word

24 (LEAF abeyance))
(pos

26 (LEAF n))
(d e f i n i t i o n

28 (LEAF in exp r e s s i on s only))
(exp r e s s i on

30 (words
(LEAF [property] in abeyance))

32 (meaning
(LEAF property without an owner))

34)
(exp r e s s i on

36 (words
(LEAF hold smth . in abeyance))

38 (meaning
(LEAF temporar i ly suspend smth .))))

Listing 5: The final results of converting the example XML, after adapting the
stylesheet.

B A program for converting s-expressions to XML

This short library-with-builtin-example-program needs Python 2.3 to run, get
it from http://www.python.org/.

For usage, invoke it like so: python lisp2xml.py -h.

#!/ usr / bin /env python
Author : Hanne Moa
Date : 2004−12−10
LICENSE: pu b l i c domain

import s t r i ng , sys
from optparse import OptionParser

class Lisp2XML FST(ob j e c t) :

def i n i t (s e l f , root=’ROOT’ , empty=’EMPTY’ , readfrom=’ ’) :
s e l f . emptytag = empty

9

s e l f . r oo t tag = root
i f readfrom :

s e l f . readfrom = f i l e (readfrom)
else :

s e l f . readfrom = sys . s td in
s e l f . t a g s = []
s e l f . next = None
s e l f . prev = None

def i s s t a r t p a r e n s (s e l f) :
s e l f . i s t a g ()
s e l f . t a g s . append ([])

def i s t a g (s e l f) :
prevtag = ’ ’ . j o i n (s e l f . t a g s [−1]) or s e l f . emptytag
s e l f . t a g s [−1] = prevtag
s e l f . wr i t e (”<%s>” % prevtag)

def i s endpar en s (s e l f) :
tag = ’ ’ . j o i n (s e l f . t a g s . pop ())
s e l f . wr i t e (”</%s>” % tag)

def wr i t e (s e l f , something) :
sys . s tdout . wr i t e (something)

def comment(s e l f , char) :
i f char == ’ \n ’ :

return s e l f . prev
else :

return ’ comment ’

def s t a r t t a g (s e l f , char) :
s e l f . prev = ’ s t a r t t a g ’
i f char in s t r i n g . whitespace :

return ’ s t a r t t a g ’
e l i f char == ’ (’ :

s e l f . t a g s . append ([])
return ’ i n tag ’

e l i f char == ’%’ :
return ’ comment ’

else :
return ’ e r r o r ’

def i n tag (s e l f , char) :
s e l f . prev = ’ in tag ’
i f char == ’ (’ :

s e l f . i s s t a r t p a r e n s ()
return ’ i n tag ’

e l i f char in s t r i n g . whitespace :
i f not s e l f . t a g s [−1] :

return ’ i n tag ’
else :

s e l f . i s t a g ()
return ’ indata ’

e l i f char == ’%’ :
return ’ comment ’

e l i f char == ’) ’ :
s e l f . i s endpar en s ()
return ’ indata ’

else :
s e l f . t a g s [−1] . append (char)
return ’ i n tag ’

10

def indata (s e l f , char) :
s e l f . prev = ’ indata ’
d e f au l t = ’ indata ’
i f char == ’ (’ :

s e l f . t a g s . append ([])
return ’ i n tag ’

e l i f char == ’) ’ :
s e l f . i s endpar en s ()
return de f au l t

e l i f char in s t r i n g . whitespace :
s e l f . wr i t e (char)
return de f au l t

e l i f char == ’%’ :
return ’ comment ’

else :
s e l f . wr i t e (char)
return de f au l t

def e r r o r (s e l f , char) :
return ’ ’

eng ine = {
’ comment ’ : comment ,
’ s t a r t t a g ’ : s t a r t t ag ,
’ i n tag ’ : intag ,
’ indata ’ : indata ,
’ e r r o r ’ : e r ro r ,
}

def convert (root=’ROOT’ , empty=’EMPTY’ , readfrom=’ ’) :
f s t = Lisp2XML FST(root , empty , readfrom)
engine = f s t . eng ine
f s t . wr i t e (”<%s>” % f s t . root tag)
for l i n e in f s t . readfrom :

for char in l i n e :
i f not f s t . t a g s :

next = ’ s t a r t t a g ’
f s t . wr i t e (’ \n ’)

prev = next
next = engine [next] (f s t , char)
i f not next :

i f f s t . t a g s :
f s t . i s endpar en s ()

break

i f f s t . t a g s :
f s t . i s endpar en s ()

f s t . wr i t e (”</%s>\n” % f s t . root tag)
f s t . readfrom . c l o s e ()

i f name == ’ ma in ’ :
usage = ”””Usage : %prog [opt ions] < FILE

Trans late s−ep r e s s i o n s in to XML. ”””
par s e r = OptionParser (usage=usage)
par s e r . add opt ion (”−f ” , ”−− f i l e ” , metavar=’FILE ’ ,

he lp=” convert s−exp r e s s i on s in FILE”)
par s e r . add opt ion (”−e” , ”−−empty” , d e f au l t=’EMPTY’ ,

he lp=” f a l l b a c k tag in case o f ’ ((’ in source ”)
par s e r . add opt ion (”−r ” , ”−−root ” , d e f au l t=’ROOT’ ,

he lp=” tag to use as root , i f none”)

(opts , a rgs) = par s e r . p a r s e a r g s ()

11

convert (root=opts . root , empty=opts . empty , readfrom=opts . f i l e)

Listing 6: Source for converting from s-expressions to XML

12

