
A quick overview of LFG

April 24, 2004

Contents

1 Short introduction 2

2 c-structure and f-structure 2

3 From c-structure to f-structure: regular expressions, unification

and lexical entries 2

3.1 Lexical entries . 2
3.2 Step by step, c to f . 3

4 Example analysis of two sentences 3

4.1 Lexical entries . 3
4.2 ‘John made Peter angry’ . 4
4.3 ‘Mary gave Jane the book about which John’s teacher had said

many nice things.’ . 5

A A very shallow overview of unification 8

1

1 Short introduction

LFG, short for Lexical-Functional Grammar, is one of many formal methods of
describing grammars of natural languages1. As the name implies, the system
covers both the semantics (Lexical) and the syntax (Grammar) by means of
connecting them with functions (Functional).

An L-F grammar for a language has at least a more or less specified c-
structure, an f-structure and a lexicon.

2 c-structure and f-structure

The two central show pieces of LFG are c-structure and f-structure2. The c-
structure describes the external factors that usually vary by language, while the
f-structure tries to capture the common internal structure that is roughly the
same everywhere.

Constituent structure describes the exterior form, the order of elements/constituents
of the clause. c-structures are regular expressions/trees with the addition of
functional schemata placed below each node. The combination of the ordering
and the schemata build up the f unctional-structure, which describes the inte-
rior form, which is not necessarily ordered. The f-structure can be written as
an attribute-value matrix (hereafter AVM), or as a list of its defining functions.

3 From c-structure to f-structure: regular ex-

pressions, unification and lexical entries

The regular expressions3 and functional schemata of c-structure build the func-
tions or partial AVMs that, through unification4, see appendix A, with each
other and the lexical entries, generates the full-fledged f-structure.

3.1 Lexical entries

A single lexical entry in LFG consist of a unique reference to the entry (column
1), what c-rule in the c-structure it belongs to (column 2) and a list of functions:

gave: V (↑ PRED) = ‘give
�
SUBJ, OBJ, OBJ2 � ’

(↑ TENSE) = simplepast

John: N (↑ PRED) = ‘John’

(↑ NUMBER) = singular

If there should be another ‘gave’ in English with a different meaning, the
reference and function-list would look different:

gave2: V (↑ PRED) = ‘give
�
SUBJ, OBJ � ’

(↑ TENSE) = simplepast

1Others include GPSG, HPSG, minimalism and many others
2There are many other ‘’structures’ in LFG, like semantic structure and argument structure
3For the skinny on regular expressions, see Lewis and Papadimitriou (1997) for the theory

and any book on the programming language Perl for the practice.
4Shown well in Jurafsky and Martin (2000, chapter 11).

2

3.2 Step by step, c to f

(1) a. Regular expressions with functional schemata. . .
S → NP

(↑ SUBJ) =↓

VP
↑=↓

b. . . . are equivalent to a tree (a c-structure), and by putting a unique
index on each node . . .

Sf1

(↑ SUBJ) =↓

NPf2

↑=↓

VPf4

c. . . . builds functions by replacing the arrows in the functional schemata,
. . .

f1 = f4
(f1SUBJ) = f2

d. . . . which are equivalent to an attribute-value matrix (AVM), the
f-structure.

f1, f4

[

SUBJ f2

[

. . .

]

]

e. This AVM is then unified with the lexical entries.

f1, f4



SUBJ f2

[

PRED ‘John’

NUMBER singular

]





4 Example analysis of two sentences

4.1 Lexical entries

Most nouns and adjectives used below have only PRED for an attribute and
will not be listed. The entries for the rest follow:

made: V (↑ PRED) = ‘make
�
SUBJ, OBJ, XCOMP � ’

(↑ XCOMP SUBJ) = (↑ OBJ)
(↑ TENSE) = simplepast

gave: V (↑ PRED) = ‘give
�
SUBJ, OBJ, OBJ2 � ’

(↑ TENSE) = simplepast

had said: V (↑ PRED) = ‘say
�
SUBJ, OBJ � ’

(↑ TENSE) = pastperfect

the: D (↑ PRED) = ‘the’

(↑ SPECTYPE) = def

about: P (↑ PRED) = ‘about
�
OBJ � ’

which: N (↑ PRED) = ‘pro’

(↑ PRONTYPE) = rel

John’s: D (↑ PRED) = ‘John’

(↑ SPECTYPE) = poss

many: D (↑ PRED) = ‘many’

(↑ SPECTYPE) = quant

things: N (↑ PRED) = ‘things’

(↑ NUM) = plural

3

4.2 ‘John made Peter angry’

This first sentence is here interpreted as a causative-construction, not in the
‘create’-sense of made. The real problem however is the nature of the XCOMP,
as it is a cause of a predicative construction with the copular verb to be and not
your average verb... I have chosen the solution in Butt et al. (1999, p. 69) but
renamed PREDLINK to PREDIC for purely aesthetical reasons.

The c-rules have been simplified to make the c-structure smaller.

(2) a.
S → NP

(↑ SUBJ) =↓

VP
↑=↓

b.
NP →

{

A
↑=↓

∣

∣

∣

∣

N
↑=↓

}

c.
VP → V

↑=↓

NP
(↑ OBJ) =↓

V
(↑ XCOMP) =↓

(↑ XCOMP PRED) = ‘be � SUBJ, PREDIC � ’
d.

V → NP
(↑ PREDIC) =↓

(3) ‘John made Peter angry’
Sf1

(↑ SUBJ) =↓

NPf2

↑=↓

VPf4

↑=↓

Nf3

↑=↓

Vf5

(↑ OBJ) =↓

NPf6

(↑ XCOMP) =↓

Vf8

John made
↑=↓

Nf7

(↑ PREDIC) =↓

NPf9

Peter
↑=↓

Af10

angry

f1 = f4 = f5
(f1SUBJ) = f2
f2 = f3
(f4OBJ) = f6
f6 = f7
(f4XCOMP) = f8
(f4XCOMP PREDIC) = ‘be

�
SUBJ, PRED � ’

(f8PREDIC) = f9
f9 = f10

4

f1, f4, f5





































PRED ‘make
〈

SUBJ, XCOMP
〉

’

TENSE simplepast

SUBJ f2, f3

[

PRED ‘John’
]

OBJ f6, f7

[

PRED ‘Peter’
]

XCOMP f8











PRED ‘be
〈

SUBJ, PREDIC
〉

’

SUBJ

PREDIC f9, f10

[

PRED ‘angry’
]















































4.3 ‘Mary gave Jane the book about which John’s teacher

had said many nice things.’

The following rules are taken almost verbatim from Dalrymple (2001, chapter
14) and not reproduced here: (28), of N, (29), of CP, (31), of RelP, (38), of
RTopicPath, and (41), of RelPath. The only difference is that all instances
of the symbol ‘RelPro’ has been replaced5 by the symbol ‘RELATUM’, with
equivalent meaning and function.

(4) a.
S → NP

(↑ SUBJ) =↓

VP
↑=↓

(

PP
(↑ ADJ) =↓

)

b.
NP →

(

D
(↑ SPEC) =↓

) (

A
(↑ ADJ) =↓

)

N
↑=↓

N
(↑ ADJ) =↓

c.
VP → V

↑=↓

NP
(↑ OBJ) =↓

(

NP
(↑ OBJ2) =↓

) (

PP
(↑ ADJ) =↓

)

d.
C ≡ S

↑=↓

(5) ‘Mary gave Jane the book about which John’s teacher had said many
nice things.’

Sf1

(↑ SUBJ) =↓

NPf2

↑=↓

VPf4

↑=↓

Nf3

↑=↓

Vf5

(↑ OBJ) =↓

NPf6

(↑ OBJ2) =↓

NPf8

Mary gave
↑=↓

Nf7

(↑ SPEC) =↓

Df9

↑=↓

Nf10

↑=↓

Nf11

Jane the book
↓∈ (↑ ADJ)

CPf12

...

5The reason for this is that as many languages does not have relative pronouns, a more
neutral name for the marker of relativity was needed.

5

...
CPf12

(↑ TOPIC) =↓

PPf13

↑=↓

Sf17

↑=↓

Pf14

(↑ OBJ) =↓

NPf15

(↑ SUBJ) =↓

NPf18

↑=↓

VPf21

about
↑=↓

Nf16

(↑ SPEC) =↓

Df19

↑=↓

Nf20

↑=↓

Vf22

which John’s teacher had said
(↑ OBJ) =↓

NPf23

(↑ SPEC) =↓

Df24

(↑ ADJ) =↓

Af25

↑=↓

Nf26

many nice things

f1 = f4 = f5
(f1SUBJ) = f2
f2 = f3
(f4OBJ) = f6
f6 = f7
(f4OBJ2) = f8
(f8SPEC) = f9
f8 = f10 = f11
(f11ADJ) = f12
(f12TOPIC) = f13
(f12TOPIC) = (f12ADJ)
(f12RELATUM) = (f12TOPIC OBJ)
(f12RELATUM PRONTYPE) =c rel

f13 = f14

(f13OBJ) = f15
f15 = f16
f12 = f17
(f17SUBJ) = f18
(f18SPEC) = f19
f18 = f20
f17 = f21
f21 = f22
(f21OBJ) = f23
(f23SPEC) = f24
(f23ADJ) = f25
f23 = f24

6

f1,f4,f5





























































































































PRED ‘give
〈

SUBJ, OBJ, OBJ2
〉

’

TENSE simplepast

SUBJ f2, f3

[

PRED ‘Mary’
]

OBJ f6, f7

[

PRED ‘Peter’
]

OBJ2 f8,f10,f11

































































































PRED ‘book’

SPEC f9

[

PRED ‘the’

SPECTYPE def

]

ADJ f12,f17,f21,f22













































































































































































































































TOPIC f13,f14











PRED ‘about
〈

OBJ
〉

’

OBJ f15,f16

[

PRED ‘pro’

PRONTYPE rel

]











RELATUM

PRED ‘say
〈

SUBJ, OBJ
〉

’

TENSE pastperfect

SUBJ f18,f20









PRED ‘teacher’

SPEC f19

[

PRED ‘John’

SPECTYPE poss

]









OBJ f23,f24

















PRED ‘things’

SPEC f24

[

PRED ‘many’

SPECTYPE quant

]

ADJ f25

{

[

PRED ‘nice’
]

}

















ADJ

{

[]

}









































































































































































































































































































































































































































































7

A A very shallow overview of unification

‘Unification’, the verb is ‘to unify’, is how AVMs are combined into a new
AVM. Depending on the AVMs involved, the resulting AVM is either the same
size or bigger and more complex than the original AVMs. Point by point:

� An AVM can be empty.

� A non-empty AVM contains one or more attributes, each having a value.

� The value of an AVM can be another AVM, ergo we get recursion.

� An AVM unifies with an empty AVM.

� An AVM unifies with itself.

� An AVM unifies with any other AVM that it shares no attributes with.

� An AVM unifies with another AVM having the same attributes if the
attribute’s values are identical, or if AVMs, unify.

References

Miriam Butt, Tracy Holloway King, Maŕıa-Eugenia Niño, and Frédérique
Segond. A grammar writer’s cookbook. Number 95 in CSLI lecture notes.
CSLI Publications, 1999. ISBN 1575861704.

Mary Dalrymple. Lexical Functional Grammar. volume 34 of Syntax and

semantics. Academic Press, 2001. ISBN 0126135347.

Daniel Jurafsky and James H. Martin. Speech and language processing.
Prentice-Hall, Inc., 2000. ISBN 0130950696.

Harry Lewis and Christos H. Papadimitriou. Elements of the theory of

computation. Prentice Hall, 1997. ISBN 0132624788.

8

